
Accounting for Similarity-Based Reasoning within a Cognitive

Architecture

Ron Sun (rsun@rpi.edu)
Cognitive Sciences Department
Rensselaer Polytechnic Institute

Troy, NY 12180, USA

Xi Zhang (xzf73@mizzou.edu)
Department of CS

University of Missouri
Columbia, MO 65211, USA

Abstract

This work explores the importance of similarity-based
processes in human everyday reasoning, beyond purely
rule-based processes prevalent in AI and cognitive sci-
ence. A unified framework encompassing both rule-
based and similarity-based reasoning may provide ex-
planations for a variety of human reasoning data.

The paper implements this analysis in a cognitive ar-
chitecture Clarion, which has previously succeeded
in capturing a variety of human learning data in sim-
ulations. The exploration of similarity-based reason-
ing in this architecture leads to a more complete and
more comprehensive framework of human reasoning and
learning. The simulation within this architecture accu-
rately captures human reasoning data, including numer-
ical measures and verbal protocols. This work demon-
strates the significant role played by similarity-based
reasoning. Furthermore, it demonstrates how such a
reasoning process falls out of the existing structure in
the cognitive architecture Clarion.

Introduction

What is human everyday reasoning like? Is it suitably
captured by formal models developed by logicians and AI
researchers? Or is it different? What are its similarities
and differences to these models? After all, computation-
ally speaking, what are the essential patterns in such
reasoning?
In this paper, we will attempt to describe some data of

human everyday (i.e., mundane or “commonsense”) rea-
soning in computational terms. We will instantiate our
analysis in the form of a computational model imple-
mented in a generic cognitive architecture — Clarion
(Sun 2002).
A little background is in order here. Sun (1991) pro-

posed a theory of human everyday reasoning based on a
combination of rule-based reasoning and similarity-based
reasoning, implemented with a mixture of localist and
distributed connectionist models. This theory was fur-
ther developed and elaborated in Sun (1995). The basic
tenet of this theory is that, to a significant extent, human
everyday reasoning may be described by a combination
of rule-based and similarity-based reasoning. Human ev-
eryday reasoning may be reduced to these two types of
processes. The intermixing of rule-based and similarity-
based reasoning can lead to complex patterns of infer-
ences as commonly observed in human everyday reason-
ing. And these two types of processes may be captured
within a unified connectionist model; that is, they fall

out of the very same model (albeit with a combination
of localist and distributed representations).
The theory was backed up by psychological evidence

in the form of verbal protocols as in Collins (1978) and
Collins and Michalski (1989). In Sun (1995), these pro-
tocols were analyzed based on two mechanisms: rules
and similarity (Tversky 1977, Hahn and Chater 1998).
The analysis showed that vast majority of the proto-
col data might be easily captured by the intermixing
of these two mechanisms. This theory was crystallized
into a two-component model whereby rule-based reason-
ing was carried out in one component with localist rep-
resentation, and similarity-based reasoning in another
with distributed representation (Sun 1995). Relevant to
this approach, Sloman (1993) published a set of experi-
ments, which provided support to the hypothesis of Sun
(1991) (see also Sun 1995). He found that similarity
played a significant role in determining outcomes of in-
ductive reasoning and similarity might be characterized
by feature overlapping (as in Sun 1991). Five years later,
Sloman (1998) described further experiments that again
supported the hypothesis that there were two parallel
mechanisms at work in human everyday reasoning (Sun
1991).
In the remainder of this paper, we first describe the

three pertinent experiments of Sloman (1998), which
were consistent with the theory advanced in Sun (1991)
and Sun (1995). We then describe the generic cognitive
architecture, Clarion, used in capturing human every-
day reasoning. Next, the particular setup of the archi-
tecture for capturing this set of human experiments is
described. We then describe the results from simulat-
ing the experiments of Sloman (1998) using Clarion.
Finally, some general discussion completes the paper.

The Categorical Inference Task

Let us examine some human reasoning data that illus-
trates combinations of similarity-based and rule-based
reasoning (SBR and RBR, respectively). We will look
into the data from experiments 1, 2, 4, and 5 of Sloman
(1998), which are most relevant to this issue.
Among them, according to our interpretation, al-

though experiment 1 used forced choice while experiment
2 used rating of argument strength, both involved SBR
to a very significant extent. Experiment 4 involved ex-
plicit use of categorical relations, and thus mainly RBR.
Experiment 5 involved more of SBR, as well as RBR.



Specifically, in experiment 1, subjects were given pairs
of arguments, either in the form of premise specificity:

a. All flowers are susceptible to thrips. =⇒ All roses
are susceptible to thrips.

b. All plants are susceptible to thrips. =⇒ All roses
are susceptible to thrips.

or in the form of inclusion similarity:

a. All plants contain bryophytes. =⇒ All flowers
contain bryophytes.

b. All plants contain bryophytes. =⇒ All mosses
contain bryophytes.

Subjects were to pick the stronger of the two arguments
from each pair. 73 subjects were tested and each was
given 18 pairs of arguments (among other things not
related to this task).
The results showed that the more similar argument

from each pair of arguments was chosen 82% of times (for
inclusion similarity) and 91% of times (for premise speci-
ficity). t tests showed that these percentages were signif-
icantly above chance, either by subjects (t(72) = 18.64
and t(72) = 33.09 for premise specificity and inclusion
similarity, respectively; p < 0.0001) or by argument pairs
(t(8) = 6.97 and t(8) = 15.61 respectively; p < 0.0001).
We note that, if only RBR had been used, then sim-
ilarity should not have made a difference, because the
conclusion category was contained in the premise cate-
gory and thus both arguments in each pair should have
been equally, perfectly strong. Therefore, the data sug-
gest that SBR was involved to a significant extent.
In experiment 2, subjects were instead asked to rate

the likelihood (“conditional probability”) of each argu-
ment. Ratings could range from 0 to 1. 18 subjects were
tested.
The mean rating was 0.89 for inclusion similarity and

0.86 for premise specificity. Both were significantly be-
low 1, both by subjects (t(17) = 2.75 and t(17) = 3.23
respectively; p < 0.01), and by arguments (t(17) = 8.87
and t(17) = 6.14 respectively; p < 0.0001). Again we
note that it would have been the case that the out-
come was 1 if only RBR had been used (because the
conclusion category was contained in the premise cat-
egory). Thus, SBR was significantly present here too.
Indeed, ANOVA showed that across subjects, there was
a significant main effect of similarity (low vs. high;
F (1, 17) = 18.90, p < 0.001). So was the case across
argument pairs (F (1, 16) = 12.64, p < 0.001).
In experiment 4, subjects were asked to rate the like-

lihood of each argument. Ratings could range from 0 to
1. However, in this case, each category inclusion relation
was specifically presented as part of each argument. For
example,

All plants contain bryophytes. All mosses are
plants. =⇒ All mosses contain bryophytes.

The results showed that the mean judgment was 0.99. 23
out of 27 subjects gave all 1’s. 32 out of 36 arguments re-
ceived judgments of all 1’s (excluding one individual who
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Figure 1: The CLARION architecture.

gave 0.99 throughout). In other words, the similarity-
based phenomena almost disappeared. Instead, an ex-
plicit RBR mode based on category inclusion relations
was used.
Experiment 5 was similar to experiment 2, in that rat-

ings were obtained. However, before any ratings were
done, subjects were asked to make category inclusion
decisions. Thus, in this case, subjects were reminded of
rule-based reasoning explicitly involving category inclu-
sion relations. Therefore, they were more likely to use
RBR, although probably not as much as in experiment 4,
due to the separation of category inclusion judgment and
argument likelihood rating in the experiment procedure
(unlike that of experiment 4).
The results showed that no one of the 18 subjects gave

a likelihood judgment of 1 for every argument, indicating
SBR was probably at work. Compared with experiment
2, having subjects make category inclusion judgments
increased the likelihood ratings. The mean judgment for
experiment 5 was 0.92 as opposed to 0.87 for experiment
2. 1 This increase might reflect the increased involve-
ment of RBR. Nevertheless, ANOVA showed a signifi-
cant effect of similarity (low vs. high), across subjects
(F (1, 17) = 9.33, p < 0.01), and across argument pairs
(F (1, 16) = 11.42, p < 0.01).
Below, we will utilize this task of categorical inference

for the further testing of cognitive architectureClarion.
The simulation shows indications of the significance of
similarity-based reasoning (as opposed to probabilistic
or Bayesian reasoning; cf. Anderson and Lebiere 1998).

The Clarion Model

Clarion is an integrative model with a dual represen-
tational structure (Sun et al 2001, Sun 2002). It consists
of two levels: the top level captures explicit processes
and the bottom level captures implicit processes. See
Figure 1.
First, the inaccessible nature of implicit knowledge is

suitably captured by subsymbolic distributed represen-
tations provided by a backpropagation network. This
is because representational units in a distributed rep-
resentation are capable of accomplishing tasks but are

1However, the difference was not statistically significant
by subjects, although significant by arguments (t(35) =
3.81, p < 0.0001).



subsymbolic and generally not individually meaningful
(see Smolensky 1988, Sun 1995). This characteristic of
distributed representation accords well with the (direct)
inaccessibility of implicit knowledge.
In contrast, explicit knowledge may be captured in

computational modeling by a symbolic or localist rep-
resentation (Clark and Karmiloff-Smith 1993), in which
each unit is more easily interpretable and has a clearer
conceptual meaning. This characteristic captures the
property of explicit knowledge being (directly) more ac-
cessible and more manipulable (Smolensky 1988, Sun
1995).
This radical difference in the representations of the two

types of knowledge leads to a two-level model whereby
each level using one kind of representation captures one
corresponding type of process, either implicit or explicit.
The model may select to use one level or the other, based
on current circumstances (e.g., experimental conditions;
see Sun 2002 for details). When both levels are used,
the outcome from the two levels may be combined in
some ways, which may be partially domain specific (Sun
2002).
At each level of the model, there may be multiple

modules, both action-centered modules and non-action-
centeredmodules (Schacter 1990, Moscovitch and Umilta
1991). The reason for having both action-centered
and non-action-centered modules (at each level) is be-
cause, as it should be obvious, action-centered knowl-
edge (roughly, procedural knowledge) is not necessarily
inaccessible (directly), and non-action-centered knowl-
edge (roughly, declarative knowledge) is not necessar-
ily accessible (directly). Although it was argued by
some that all procedural knowledge is inaccessible di-
rectly and all declarative knowledge is directly accessi-
ble, such a clean mapping of the two dichotomies is un-
tenable in our view. We will refer to these two sets of
modules as the action-centered subsystem (the ACS) and
the non-action-centered subsystem (the NACS), respec-
tively. There are also other components, such as working
memory, episodic memory, etc., which are not important
to this work.
In this work, we will focus on the NACS, due to the

declarative nature of the task. This subsystem, as stated
earlier, consists of (1) a top level (known as the GKS, or
the general knowledge store), which is made up of a set
of chunks and a set of explicit associative rules linking
chunks, and (2) a bottom level (known as the AMNs, or
the associative memory networks), which is made up of
implicit associative memories (Sun 2002).
At the top level of the NACS, the essential ele-

ments are chunks, each of which is specified by a set
of dimension-value pairs (i.e., attribute-value pairs) that
describes an entity (or an object), along with a chunk la-
bel. Each chunk is represented by a chunk node, which is
linked to the nodes at the bottom level (the AMNs) rep-
resenting the individual dimension-value pairs involved.
The support for the conclusion of an associative rule,

which is a chunk, is calculated as follows (Sun 1994):

Sa
j =

∑

i

Sc
i ∗ W a

i (1)

where j indicates the jth rule at the top level, Sa
j is the

support for associative rule j, Sc
i is the strength of the

ith chunk in the condition of the rule, i ranges over all
the chunks in the condition of rule j, W a

i is the weight
of the ith chunk in the condition of rule j (which, by
default, is W a

i = 1/n, where n is the number of chunks
in the condition of the rule).
The conclusion chunk has a strength level that is de-

termined by the maximum of all the support from all the
relevant rules:

Sc
ck
= max

j:all associative rules leading to ck

Sa
j (2)

where Sc
ck
is the strength of chunk ck (resulting from

associative rules), and j ranges over all the associative
rules pointing to ck.
In addition, similarity-based reasoning falls out of

knowledge encoding with chunks (i.e., with sets of
dimension-value pairs). A known (given or inferred)
chunk is automatically compared with another chunk.
If their similarity is high enough, then the other chunk
is inferred. The strength of a chunk ci as the result of
similarity-based reasoning is:

Sc
ci
= max

j
(Scj∼ci

× Sc
cj
)

where Scj∼ci
measures the similarity from cj to ci (Tver-

sky 1977), Scj∼ci
× Sc

cj
measures the support to ci from

the similarity, and j ranges over all the chunks.
The default similarity measure (Sun 1995, Tversky

1977) is:

Sc1∼c2
=

Nc1∩c2

f(Nc2
)

where Sc1∼c2
denotes the similarity from c1 to c2. Nc1∩c2

is the weighted sum of the identically valued dimensions
in c1 and c2 (among all the specified dimensions of c2

— the dimensions that have specified values). That is,
Nc1∩c2

=
∑

i∈c2∩c1
W c2

i × Ai, where Ai is the strength
of the value of dimension i in chunk c1, which is nor-
mally 1 (representing full strengths). The weights (W c2

i )
in the weighted sum are specified with respect to c2

(the target of similarity, not the source of it). Nor-
mally, these weights are the same and equal to 1. Nc2

is
the weighted sum of the specified dimensions (the di-
mensions that have specified values) of c2. That is,
Nc2

=
∑

i∈c2
W c2

i × Ai, where normally Ai = 1 and
W c2

i = 1. f is a super-linear, but close to linear, func-
tion (such as f(x) = x1.0001 as in our simulation of this
task). 2 For further details, see Sun (1995).
Similarity is automatically computed whenever rea-

soning involves multiple chunks that are similar to one
another. Therefore, there is no dedicated representation
of similarity between any two chunks.
Similarity-based and rule-based reasoning can be

inter-mixed. When both SBR and RBR are employed,
we have:

Sc
ci
= max(c14 × max

j:all rules leading to ci

Sa
j ,

2Similarity is thus limited to [0, 1).



c15 × max
j:all chunks similar to ci

(Scj∼ci
× Sc

cj
))

where c14 and c15 are two constants that balance the
two measures (rule versus similarity), and Scj∼ci

is the
similarity measure.
As a result of mixing SBR and RBR, complex patterns

of reasoning can emerge. As explicated in Sun (1995),
the conclusion from one step of reasoning can be used as
the starting point of the next step. The iterative process
of combined rule-based and similarity-based reasoning
allows all possible conclusions to be reached (including
“inheritance” reasoning; Sun 1995). These different se-
quences together capture essential patterns of human ev-
eryday reasoning (see Sun 1995 for details).
Note that all of the operations of the non-action-

centered subsystem are under the control of the action-
centered subsystem, which makes action decisions each
step of the way. To do so, the top level of the ACS con-
sists of a set of explicit action rules, either externally
given or extracted from the bottom level (from implicit
knowledge), while the bottom level consists of implicit
decision networks (trained with reinforcement learning
algorithms, negligible in this task). For details regard-
ing the ACS and its parameters, see Sun et al (2001) and
Sun (2002). We will not get into these details here, as
they are not directly relevant to this work.
It is worth noting that Clarion has been successful

in simulating a variety of cognitive tasks. These tasks in-
clude serial reaction time tasks, artificial grammar learn-
ing tasks, process control tasks, alphabetical arithmetic
tasks, and the Tower of Hanoi task (Sun 2002, Sun and
Zhang 2004). In addition, we have done extensive work
on a complex minefield navigation task (Sun et al 2001,
Sun and Peterson 1998). We are now in a good position
to extend the effort to the capturing of a wide range of
human reasoning and memory processes, through simu-
lating reasoning and memory task data. This paper is
but one aspect of this effort.

Simulation Setup

At the top level of the NACS (i.e., the GKS), all relevant
category inclusion relations, such as “flowers are plants”
or “mosses are plants”, were encoded as associative rules.
Chunk nodes in the GKS were used to represent the
concepts involved, such as “flowers” and “plants”. The
dimensional values of these chunks were represented as
separate nodes in the AMNs, and thus the chunk nodes
were linked to the AMNs.
For simulating various experimental settings, the fol-

lowing manipulations were used: For simulating settings
where SBR was dominant, RBR was de-emphasized. For
simulating settings where RBR was dominant, RBR was
emphasized. The relative emphasis of the two methods
was accomplished through the balancing parameters. We
set c14 = 0.5 and c15 = 1.0 for experiments 1 and 2, be-
cause of the heavy reliance on SBR as opposed to RBR
as suggested by the analysis of the human data (see the
earlier discussion of the human data). For simulating ex-
periment 4, they were set at c14 = 1.0, c15 = 1.0, because
this setting prompted more reliance on RBR as indicated

by the human data. For simulating experiment 5, they
were set at c14 = 0.88, c15 = 1.0, because the experi-
ment involved an intermediate level of reliance on RBR
as suggested by the human data. In all, these values
were set in accordance with our interpretations of what
happened under these different experimental conditions
respectively.
At the bottom level of the NACS (the AMNs), al-

though the associative memories were present, they were
not very relevant for the performance of this task, be-
cause there was no sufficient prior training of the network
with any data directly relevant to this task. 3

Training of the model, before the simulation of the
experimental test, consisted of presenting categorical
features (dimension-value pairs) along with the cate-
gory labels, to both levels of the NACS. The features
(dimension-value pairs) captured similarities between
entities. That is, if A was more similar to C than B
was, then A would have more features in common with
C than B would. And so on. Note that repeated pre-
sentations were not required. The one-pass presentation
enabled the formation of chunks and associative rules in
the GKS, but not much implicit knowledge in the AMNs.
With a proper process of chunk encoding and associative
rule encoding as in Clarion, one-pass presentation was
sufficient for the GKS.
During test, when a category name was given, the cat-

egory name was matched with a corresponding chunk
label. The matching chunk was activated to the full
extent (i.e., 1). Then, through associative rules as well
as through similarity-based processes, conclusion chunks
were also activated (to varying extents). Conclusion
chunks were retrieved along with their strengths, com-
bining SBR and RBR according to the balancing param-
eters.
For simulating ratings of conclusions (as in experi-

ments 2, 4, and 5), the strengths of chunks derived from
a proper combination of the results of SBR and RBR (as
determined by the balancing parameters) were directly
used. However, for simulating forced choices (as in ex-
periment 1), a stochastic decision process based on the
Boltzmann distribution was used to select between two
possible outcomes.

Simulation Results

We simulated the data from experiments 1, 2, 4, and 5 of
Sloman (1998) as described earlier. For each experiment,
a set of simulation runs (i.e., simulated “subjects”) equal
to the number of the human subjects involved were used.
The results and the statistical analysis of the results were
as follows.
As described before, in experiment 1, subjects were to

pick the stronger of the two arguments from each pair.
The simulation of experiment 1 showed, the same as the
human data, that the more similar argument from each

3For the associative memory network, the number of input
units was 1800 (for representing all chunks specifiable with 60
dimensions of 30 possible values each), the number of hidden
units was 500, and the number of output units was 1800. The
learning rate was 0.2 and the momentum was 0.1.



pair of arguments was chosen more often: 82% of times
(for inclusion similarity) and 83% of times (for premise
specificity). t tests showed that these percentages were
significantly above chance, either by subjects (p < 0.001)
or by argument pairs (p < 0.001), the same as in the
human data. In our simulation setup, there was a sig-
nificant involvement of SBR (with c14 = 0.5, c15 = 1.0).
If only RBR had been used, then similarity could not
have made a difference, and thus both arguments in a
pair should have been equally strong. This simulation
demonstrated that the conjecture of the involvement of
SBR in producing the human data in this experiment
was a reasonable interpretation (see the earlier exposi-
tion of the human experiments), given the close match
with the human data.

In experiment 2, subjects were instead asked to rate
the likelihood of each argument. In this simulation, the
mean rating was 0.86 for inclusion similarity and 0.87 for
premise specificity. Both were significantly below 1, dif-
ferent from what would have been predicted if only RBR
had been used, both by subjects (p < 0.001) and by ar-
guments (p < 0.001), the same as in the human data.
ANOVA also showed that across subjects and across ar-
gument pairs, there was a significant main effect of simi-
larity (low vs. high; p < 0.001). With the same setup as
the previous simulation, this simulation again demon-
strated the same pattern of significant involvement of
SBR in the human performance.

In experiment 4, subjects were asked to rate the like-
lihood of each argument, right after being presented
relevant category inclusion relations. The simulation
produced the mean judgment 0.99, exactly the same as
the human data. Compared with experiment 2, explicit
RBR based on category inclusion was much more promi-
nent in this case, as specified in our simulation setup
(c14 = 1.0, c15 = 1.0), which captured the human data
accurately.

In experiment 5, ratings were obtained after subjects
were asked to make category inclusion decisions. In this
case, subjects were reminded of RBR involving category
inclusion relations and therefore they were more likely to
use RBR (compared with experiment 2), although not
exclusively (unlike experiment 4). In the simulation, the
mean judgment for experiment 5 was 0.91 for both in-
clusion similarity and premise specificity, as opposed to
0.86 and 0.87 for the two cases in experiment 2. ANOVA
also showed a significant main effect of similarity (low vs.
high), across subjects (p < 0.001), and across argument
pairs (p < 0.001). This simulation replicated the human
data well, which showed that our interpretation as em-
bodied in the simulation setup (c14 = 0.88, c15 = 1.0),
that is, less involvement of RBR compared with exper-
iment 4 but more compared with experiment 2, was a
reasonable one.

In all, simulation of this task successfully validated the
interpretation and the analysis of human performance in
this task and, to some extent, our framework in general.

Concluding Remarks

Overall, the simulation accurately captured the human
reasoning data from Sloman (1998). The simulation was
conducted based on our framework of mixed rule-based
reasoning and similarity-based reasoning, which, along
with other simulations published elsewhere (e.g., Sun
1995, 2002, Sun et al 2001, Sun and Zhang 2004), showed
the cognitive plausibility of the Clarion architecture to
some extent.
This simulation demonstrates the importance of

similarity-based reasoning in human everyday reasoning.
This similarity-based process is quite distinct from prob-
abilistic reasoning as implemented in other existing cog-
nitive architectures, such as ACT-R (see Anderson 1993
or Anderson and Lebiere 1998). Let us compare the two
different approaches. ACT-R as described in Anderson
and Lebiere (1998) tries to capture all inferences in a
probabilistic framework. In so doing, it lumps together
all forms of weak inferential connections in a unified way.
Although this approach leads to uniformity, it has short-
comings as well. All similarity relations between any pair
of any two objects must be explicitly represented with
all the associated parameters, which specify probabilis-
tic computation used to capture similarity-based reason-
ing (along with other inexact inferences). The problem
is the complexity of representing all similarity pairings.
This complexity is very high in ACT-R but in contrast
is avoided in Clarion.
The limitations of probabilistic reasoning (Pearl 1988)

in general include its neglect of many heuristics, simpli-
fications, and rules of thumb (Tversky and Kahneman
1983, Sun 1995, Yang and Johnson-Laird 2001) useful in
reducing the computational complexity of formal math-
ematical models. As a result, it suffers from higher com-
putational complexity (Sun 1995).
We should also look into the framework of Collins

and Michalski (1989), which apparently incorporated
“similarity-based” reasoning through explicitly repre-
senting similarity in a complex logical formalism. Sim-
ilarity was explicitly represented as a logical operator:
That is, for almost any pair of any two objects, there
would be a logical relation explicitly represented, denot-
ing their similarity. Inferences could be performed on
the basis of similarity operators, using a search process.
The complexity of this representational framework was
extremely high.
In general, logic-based models suffer from a number of

well known shortcomings, including their restrictiveness
concerning pre-conditions, consistency, and correctness,
and their inability in dealing with inexactness (see, e.g.,
Israel 1987, Sun 1995). Their restrictiveness renders such
models costly, difficult to specify, and difficult to use.
In a different vein, psychological work on reasoning is

relevant also. Such work mostly centers around either
mental logic (Rips 1994, Braine and O’Brien 1998) or
mental models (Yang and Johnson-Laird 2001). Neither
approach deals with similarity-based reasoning as cap-
tured in Clarion. Their focuses are elsewhere.
In sum, this line of work, combining similarity-based

reasoning and rule-based reasoning (Sun 1995, Sloman



1998, Hahn and Chater 1998), offers a new approach
for capturing some essential patterns of human every-
day reasoning (albeit not all patterns of human reason-
ing). It complements logic-based “commonsense” rea-
soning models prevalent in AI, which is very much cen-
tered on logic and thus limited by logic. This work also
points to new avenues of cognitive modeling, beyond the
current psychology of reasoning (which largely focuses
on various logics and mental models) and beyond exist-
ing cognitive architectures (Anderson and Lebiere 1998).
In addition, this approach may well be extended to case-
based and/or analogical reasoning (e.g., Sun 1995a).
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