Recursive Sets and Relations

Computability and Logic
The Plan

• Eventually, I will show that any Turing-computable* function is a recursive function, thereby closing the ‘loop’:
 – All Turing-computable* functions are recursive
 – All recursive functions are Abacus-computable* (already shown)
 – All Abacus-computable* are Turing-computable* (already shown)

• Thus, we will have shown that these three sets are exactly the same, providing evidence in favor of the Church-Turing Thesis.

• OK, but to show that any Turing-computable* function is a recursive function, I will need a whole lot more machinery:
 – I need to prove a bunch more functions to be recursive.
 – I will define recursive sets and relations ... which will be a great help in showing certain functions to be recursive ... and vice versa
Recursive Sets

• The characteristic function c_S of a set $S \subseteq \mathbb{N}$ is defined as follows:
 – $c_S(x) = 1$ if $x \in S$
 – $c_S(x) = 0$ if $x \notin S$

• A set S is a recursive set iff its characteristic function c_S is a recursive function

• Examples of recursive sets
 – The empty set ($c_S = \bot$)
 – The set of all natural numbers ($c_S = \text{const}_1$)
 – The set of even numbers ($c_S = ?$)
Recursive Relations

- The characteristic function c_R of a relation $R \subseteq \mathbb{N}^k$ is defined as follows:
 - $c_S(x_1, ..., x_k) = 1$ if $<x_1, ..., x_k> \in S$
 - $c_S(x_1, ..., x_k) = 0$ if $<x_1, ..., x_k> \not\in S$

- A relation R is a recursive set iff its characteristic function c_R is a recursive function

- Examples of recursive relations: $<$, $>$, \leq, $=$

\[
\begin{align*}
 c_<(x, y) &= \text{sg}(y - x) \\ c_>(x, y) &= \text{sg}(x - y) \\ c_\leq(x, y) &= \overline{\text{sg}(x - y)} \\ c_=(x, y) &= \overline{\text{sg}(x - y)} \times \overline{\text{sg}(y - x)}
\end{align*}
\]
Finding new Recursive Functions and Relations

• In the next slides, we’ll go over a bunch of different methods to define new functions and relations (and sets, but they can be seen as 1-place relations) from existing ones.

• In each case, we can show that if the existing functions and relations are recursive, then the resulting functions and relations will be recursive as well.
Processes

- From functions to functions:
 - Composition, Recursion, Minimization (we saw this!)
- From functions and relations to functions:
 - Definition by Cases
- From functions and relations to relations:
 - Substitution
- From functions to relations:
 - Graph
- From relations to relations:
 - Logical operations
- From relations to functions:
 - Bounded Minimization and Maximization
Definition by Cases

• Suppose \(f(x_1, \ldots, x_n) \) is defined by:

 - \(f(x_1, \ldots, x_n) = g_1(x_1, \ldots, x_n) \) if \(R_1(x_1, \ldots, x_n) \)

 - \(\ldots \)

 - \(f(x_1, \ldots, x_n) = g_m(x_1, \ldots, x_n) \) if \(R_m(x_1, \ldots, x_n) \)

• Where:

 - \(R_1 \ldots R_m \) are mutually exclusive

 • i.e. there is no \(x_1, \ldots, x_n, i \neq j: R_i(x_1, \ldots, x_n) \) and \(R_j(x_1, \ldots, x_n) \)

 - \(R_1 \ldots R_m \) are collectively exhaustive

 • i.e. for all \(x_1, \ldots, x_n \) there is a \(i: R_i(x_1, \ldots, x_n) \)

• If:

 - \(g_1 \ldots g_m \) are all recursive functions

 - \(R_1 \ldots R_m \) are all recursive relations

• Then:

 - \(f \) is a recursive function

• Proof:

 - \(f(x_1, \ldots, x_n) = g_1(x_1, \ldots, x_n) \times c_{R_1}(x_1, \ldots, x_n) + \ldots + g_m(x_1, \ldots, x_n) \times c_{R_m}(x_1, \ldots, x_n) \)
Example: min and max

- min(x,y) is a recursive function
- Proof: min(x,y) can be defined by cases:
 - min(x,y) = x if x ≤ y
 - min(x,y) = y if x > y
- max(x,y) is a recursive function as well:
 - max(x,y) = x if x > y
 - max(x,y) = y if x ≤ y
Substitution

• Given:
 – Relation $R(y_1, \ldots, y_m)$
 – Functions $f_1(x_1, \ldots, x_n)$, \ldots, $f_m(x_1, \ldots, x_n)$

• We can define relation $R'(x_1, \ldots, x_n)$ as follows:
 – $R'(x_1, \ldots, x_n)$ iff $R(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$

• If:
 – $R(y_1, \ldots, y_m)$ is a recursive relation
 – $f_1(x_1, \ldots, x_n)$, \ldots, $f_m(x_1, \ldots, x_n)$ are recursive functions

• Then:
 – R' is a recursive relation

• Proof:
 – $c_{R'}(x_1, \ldots, x_n) = c_R(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$
Example

• Consider relation \(R(x,y,z) \) defined as follows:
 – \(R(x,y,z) \) iff \(y \times z \leq x \)

• We see that \(R \) is the result of substituting the recursive function \(\times \) into recursive relation \(\leq \)

• Thus, \(R \) is recursive

• (Technically, \(R \) is the result of substituting the functions \(f_1(x,y,z) = y \times z \) and \(f_2(x,y,z) = x \) into \(\leq \), and we need to show that \(f_1(x,y,z) = y \times z \) and \(f_2(x,y,z) = x \) are recursive ... but that’s trivial using the identity functions)
Graph

- Remember that any function $f: X \rightarrow Y$ can be seen as a relation defined over $X \times Y$.
- The Graph operation will obtain a relationship from a function in exactly this manner.
 - Given function $f(x_1, \ldots, x_n)$
 - Define $R_f(x_1, \ldots, x_n, y)$ iff $f(x_1, \ldots, x_n) = y$
- If f is recursive, then R_f is recursive.
- Proof: R_f is the result of substituting recursive function f into recursive relation =
Logical Operations

• Given n-place relations R, R_1, and R_2 we can define:
 - $\neg R(x_1, ..., x_n)$ iff not $R(x_1, ..., x_n)$ (i.e. $<x_1, ..., x_n> \notin R$)
 - $R_1 \land R_2(x_1, ..., x_n)$ iff $R_1(x_1, ..., x_n)$ and $R_2(x_1, ..., x_n)$
 - $R_1 \lor R_2(x_1, ..., x_n)$ iff $R_1(x_1, ..., x_n)$ or $R_2(x_1, ..., x_n)$

• If R, R_1, and R_2 are recursive, then $\neg R$, $R_1 \land R_2$, and $R_1 \lor R_2$ are recursive:
 - $c_{\neg R} = 1 - c_R$
 - $c_{R_1 \land R_2} = c_{R_1} \times c_{R_2}$ (or: $c_{R_1 \land R_2} = \min(c_{R_1}, c_{R_2})$
 - $c_{R_1 \lor R_2} = \text{sg}(c_{R_1} + c_{R_2})$ (or: $c_{R_1 \lor R_2} = \max(c_{R_1}, c_{R_2})$)
Bounded Quantification

• Given $n+1$-place relation $R(x_1, \ldots, x_n, y)$, we can define:

 • $\exists v \leq u [R](x_1, \ldots, x_n, u)$ iff there exists some $v \leq u$ such that $R(x_1, \ldots, x_n, v)$

 – We’ll simply write this as $\exists v \leq u R(x_1, \ldots, x_n, v)$

 • $\forall v \leq u [R](x_1, \ldots, x_n, u)$ iff for all $v \leq u$: $R(x_1, \ldots, x_n, v)$

 – We’ll simply write this as $\forall v \leq u R(x_1, \ldots, x_n, v)$

• If R is recursive, then $\exists v \leq u [R]$ and $\forall v \leq u [R]$ are recursive as well:

$$c_{\exists v \leq u [R]}(x_1, \ldots, x_n, u) = sg\left(\sum_{v=0}^{u} c_R(x_1, \ldots, x_n, v) \right)$$

$$c_{\forall v \leq u [R]}(x_1, \ldots, x_n, u) = \prod_{v=0}^{u} c_R(x_1, \ldots, x_n, v)$$
Using Strict Bounds

\[c_{\exists v < u[R]}(x_1, \ldots, x_n, u) = \begin{cases} c_{\exists v \leq u[R]}(x_1, \ldots, x_n, \text{pred}(u)) & \text{if } 0 < u \\ 0 & \text{if } 0 = u \end{cases} \]

\[c_{\forall v < u[R]}(x_1, \ldots, x_n, u) = \begin{cases} c_{\forall v \leq u[R]}(x_1, \ldots, x_n, \text{pred}(u)) & \text{if } 0 < u \\ 1 & \text{if } 0 = u \end{cases} \]
Example: Prime

- Consider the 1-place relation $P(x)$ where $P(x)$ iff x is prime (alternatively, consider the set P of all primes)

- $P(x)$ is recursive (P is recursive) since:
 - $P(x)$ iff $1 < x \land \neg \exists y < x \exists z < x \ y \times z = x$
 - That is: $P(x)$ can be defined by applying the processes of logical operators (\neg, \land, and bounded quantification), substitution, and composition to other recursive functions (const_1 and \times) and recursive relations ($<$ and $=$).
Bounded Minimization and Maximization

• Given n+1-place relation $R(x_1, \ldots, x_n, y)$ define n+1-place functions $\text{Min}[R]$ and $\text{Max}[R]$:
 – $\text{Min}[R](x_1, \ldots, x_n, w) = \text{smallest } y \leq w \text{ for which } R(x_1, \ldots, x_n, y) \text{ if such a } y \text{ exists}$
 – $\text{Min}[R](x_1, \ldots, x_n, w) = w + 1 \text{ if no such } y \text{ exists}$
 – $\text{Max}[R](x_1, \ldots, x_n, w) = \text{largest } y \leq w \text{ for which } R(x_1, \ldots, x_n, y) \text{ if such a } y \text{ exists}$
 – $\text{Max}[R](x_1, \ldots, x_n, w) = 0 \text{ if no such } y \text{ exists}$
Proof that $\text{Min}[R]$ is Recursive if R is Recursive

If R is recursive, then $\text{Min}[R]$ is recursive as well:

$$\text{Min}[R](x_1, \ldots, x_n, w) = \sum_{i=0}^{w} c_S(x_1, \ldots, x_n, i)$$

where c_S is the characteristic function of the relation S defined as $\forall t \leq i[\neg R](x_1, \ldots, x_n, i)$
Why This Works

Suppose we want to know Min[R](x,w), where R is defined as below:

\[
\neg R(x,w) \Leftrightarrow \forall t \leq w \neg R(x,t)
\]

<table>
<thead>
<tr>
<th>w</th>
<th>R(x,w) (e.g.)</th>
<th>\neg R(x,w)</th>
<th>S(x,w) = \forall t \leq w [\neg R(x,w)] = \forall t \leq w \neg R(x,t)</th>
<th>c_s(x,w)</th>
<th>\sum_{i=0}^w c_s(x,i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Verify that this is indeed Min[R](x,w)
Max[R] is Recursive too

- Left as HW question
 - Make sure to demonstrate that your function works by providing a similar table (and note that for the specific R relation as defined in that table, the Max column entries should be 0,0,2,2,4,4)
Example: quo and rem are Recursive

• Define quo(tient) and rem(ainder) functions as follows:
 – quo(x,y) = the largest $z \leq x$ such that $z \cdot y \leq x$ if $y > 0$
 – quo(x,y) = 0 if $y = 0$
 – rem(x,y) = $x - y \cdot quo(x,y)$

• quo is recursive since it is a definition by cases where one of the cases uses the bounded maximization of a recursive relation (and every other function and relation used is recursive)

• rem is recursive since -, *, and quo are recursive.
Example: The Next Prime

• Let \(\pi'(x) \) = the least \(y \) such that \(x < y \) and \(y \) is prime

• \(\pi'(x) \) is recursive, since it can be defined as the bounded minimization of a recursive relation:

 \[\pi'(x) = \min\{x < y \land \text{Prime}(y)\}(x, x!+1) \]

 – Explanation: \(x!+1 \) is not divisible by any number \(\leq x \), so either \(x!+1 \) is prime itself or it has a prime factor greater than \(x \) ... in either case, there exists a prime number greater than \(x \) but smaller or equal to \(x!+1 \)
Example: Modified Logarithms

• Consider the following two modified logarithm functions lo(x,y) and lg(x,y):
 – lo(x,y) = the largest z such that y^z divides x if x and y > 1
 where ‘x divides y’ iff for some z: $z \times x = y$
 – lo(x,y) = 0 otherwise
 – lg(x,y) = the largest z such that $y^z \leq x$ if x > 1 and y > 1
 – lg(x,y) = 0 otherwise

• lo and lg are recursive, since they can be defined using bounded maximization (use x as upper bound) and other ‘recursive’ operations over recursive functions and relations (divides can be defined as bounded existential quantification (again, use x as bound))
Prime Coding and Decoding Functions

• A sequence x_1, \ldots, x_k can be encoded using the following ‘prime coding’: $\text{code}(x_1, \ldots, x_n) = 2^n \times 3^{x_1} \times 5^{x_2} \times \ldots \times \pi(n)^{x_n}$ where $\pi(n)$ is the ‘n-th’ prime and where 2 is the ‘0-th’ prime.
 - $\pi(n)$ is recursive, since $\pi(0) = 2$ and $\pi(n+1) = \pi'(\pi(n))$
 - $\text{code}(x_1, \ldots, x_n)$ is therefore recursive as well

• Given some code number s, the sequence can be decoded using the following (recursive) function:
 - $\text{ent}(s,i) =$ the i-th entry (the 0-th entry gives the length) $= \text{lo}(s, \pi(i))$